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INTRODUCTION

Accurate theoretical descriptions (refs. 1 to 3) of high-energy heavy-ion scat-
tering phenomena require knowledge of nuclear single-particle density distributions
(i.e., matter densities). Experimentally determined nuclear density distributions,
however, are limited to charge and magnetization densities, obtained from electron
scattering experiments. Extensive tables of nuclear charge distribution parameters
exist (refs. 4 and 5). In practice, the charge densities are usually directly sub-
stituted for the matter densities where required in the analyses. The resultant
theoretical cross sections, however, are typically overestimates (refs. 3, 6, and 7).
As discussed in reference 3, these overestimates are a result of the increased sur-
face diffuseness of the nuclear charge distributions over that of the matter distri-
butions because of the finite spatial extent of the proton charge. In references 2
and 3, a method for extracting matter density distributions from Woods-Saxon charge
densities was presented in conjunction with a generalized optical-model reaction
theory for heavy-ion scattering. Although Woods-Saxon distributions are adequate for
many nuclei, a better representation for the charge distribution of light and medium-~
weight nuclei (three to eight protons) is the harmonic well distribution (refs. 4, 5,
and 8) based upon the nuclear shell model (ref. 9). 1In this paper, the general
method of references 2 and 3 is applied to obtain matter densities from harmonic well
charge densities. Unlike the Woods-Saxon distribution (used in refs. 2 and 3), which
requires some analytic approximations to obtain the resultant matter density expres-
sion, the harmonic well distribution is exactly solvable.

As developed in references 2, 3, and 10, the heavy-ion reaction theory ignores
the Pauli exclusion principle (Pauli correlation effects) by using simple products of
wave functicns rather than properly antisymmetric ones for calculating nuclear matrix
elements. Although unimportant in estimating total and absorption cross sections
for high-energy heavy-ion collisions (ref. 2), these Pauli correlation effects become
significant when determining projectile~nucleus abrasion cross sections for small
residual fragment masses (i.e., when there is large overlap between projectile and
target nuclear volumes). In this paper, a method for incorporating these effects
into the heavy-ion reaction model is presented. Finally, cross sections for selected
nuclei are predicted with the improved optical potential model.

HARMONIC WELL MATTER DENSITIES

For relatively light nuclei with incomplete 1p shells, the harmonic well charge
density (refs. 4, 5, and 8) is given by

r\2 —r2
p(r) = po[‘l + a(;) ] exp —5— (1
a

where Po is a normalization constant, r 1is the radial coordinate, the parameter a
is some simple function of Z, the nucleus proton number,

a = £(2) (2)



and a is the "oscillator parameter" given by

a = (mw )_1/2 (3)
osc

where m is the nucleon mass, 938 MeV/cz. In equation (3), Wose is the
equidistant-energy interval between successive oscillator levels (ref. 8). Rather
than determining o from some specific functional dependence on Z, it is some-
times treated as a free parameter. Equation (1) is then referred to as a "modified"
harmonic well charge density. Specific values for « and a, for the nuclei of
interest, are tabulated in references 4 and 5. Values of the normalization constant

P, are obtained by requiring that

4nf r2 p(r) dr = 1 (4)
0

The matter density is related to the harmonic well charge density through the
expression

> > > > 3>,
pc(r) ~fpp(r') pm(r+r') a’r (5)

where pc(?) is the nucleus charge density, pp(?) is the proton charge density,

and pm(f) is the desired nuclear matter density. Equation (5) implies the assump-
tion that the neutron and proton number densities within the nucleus are identical.
This is reasonable since they differ only because of Coulomb repulsion between the
protons which is a small effect in lighter nuclei. Taking the Fourier transform of
equation (5) and using the convolution theorem yield a simple product of form
factors:

Fc(q) = Fp(q) Fm(q) (6)

where

F(q) = 4n Jp r(sin gr) p(r) dar (7)
R

and g is the magnitude of the momentum transfer.

From equations (1) and (7), the nuclear charge form factor is

2 2 2 2
_ 3/2_ 3 3¢ _oga -q a
Fc(q) = pon a (1 + 5 2 )exp 2 (8)



The usual form (refs. 4 and 8) for the proton charge density is a Gaussian function:

pp(:}’) = exp 5 (9)

where r_ = 0.87 fm (ref. 11) is the proton root-mean-square charge radius. From
equation (7), the proton charge form factor is

Fp(q) = exp —2 (10)

Hence, equations (6), (8), and (10) yield a matter density form factor of

2 2
3/2_3 3 agq a 2 2
= + o= - - 11
Fm(q) Qon a <1 > 2 > exp(-g s”) (11)
where
2
2 r
2 a p
=T - = 12
S =12 6 (12)

The matter density is obtained by utilizing the inverse Fourier transform of the
matter density form factor:

1 ® .
pm(r) = ) f g(sin qgr) Fm(q) dg (13)
2t r YO0

Substituting equation (11) into equation (13) yields

o 3a 3aa2 xa r -r
3 > " > + 2 exp —— (14)
8s 8s 16s 4s

Table I lists the values for « and a, taken from reference 5, which are substi-
tuted into equations (1) and (14) to determine the charge and matter density distri-
butions. These results are plotted in figures 1 through 6 for six nuclei.



PAULI CORRELATION EFFECTS

Since nucleons have half-integer intrinsic spins (i.e., they are fermions), they
must obey the Pauli exclusion principle. This principle requires the overall system
wave function to be antisymmetric under the exchange of any two nucleons in the
system. PFor a system composed of only two nucleons, the properly antisymmetric wave
function is

®(1,2) = 2'1/2[%(1) 0g(2) = 0,(2) 0g(1)] (15)

where ¢, and ¢B are the wave functions for the nucleons. The product,

¢a(1) ¢B(2)

is usually called the direct term. Subtracted from the direct term is a product
representing the exchange of coordinates of the two nucleons. This product,

04(2) b5 (1)

is sometimes called the exchange term.

Previous versions of the optical-model reaction and fragmentation theories
(refs. 2, 3, and 10) neglected antisymmetry and used only product wave functions (the
direct term in eq. (15)). For determinations of heavy-ion total and absorption cross
sections, neglect of antisymmetry is not an extreme assumption since the largest
contributions to Fhese cross sections come from peripheral collisions where there is
little or no overlap between colliding nuclei (see "Results"). Pauli correlation
effects, however, are significant when predicting projectile abrasion cross sections,
particularly for small residual mass fragments (when there is significant overlap
between the volumes of the colliding nuclei).

In references 2, 3, and 7, the optical potential operator is

2t . (16)
aj «J

where . is the two-body transition amplitude between the a-~constituent of the
target ana the j-constituent of the projectile. The expression in equation (16) is
general in that it was derived independently of any specific assumptions regarding
nuclear wave functions. In references 2 and 3, it was shown that for a simple prod-
uct of wave functions, equation (16) yields for the optical potential

> 32> 3> > > > ~ >
W(x) = APAT fd E‘T pT(_F:T) fd Yy pP(x+y+ET) t(e,y) (17)



where

Ap+Ap nuclear mass numbers of the projectile and target

e two-nucleon kinetic energy in their center of mass frame, GeV
.)

x

relative position vector of the projectile, fm

two-nucleon relative position vector, fm

iy MY

collection of constituent relative coordinates for target, fm

and the average two-nucleon transition amplitude is

te,¥) = 2t (18)
ApAp o3

Equation (17) is a valid representation for the direct term, but does not include any
Pauli correlation effects. In the following sections, equation (17) is generalized
to include the exchange (correlation) effects.

Second Quantization Notation

In terms of second quantization notation (ref. 12), a two-body operator can be
expressed as

=-% 2: E: (ik|gllm)b;b1blbm (19)
ik fm

where b is an annihilation operator and bl a creation operator for a nucleon in
the single-particle state vy (y = i,k,%,m). The matrix element in equation (19) is
given by

. _ 3> 3> +, > t > > > > >
(ik|g|am) = fd X, fd X, 6 (%)) 8 (%,) glx ,x,) 6,(x,) ¢ (x,) (20)
In this notation, a two-particle state is written as
| > = b'bT 0> (21)

where ld} is the vacuum state. Thus, in terms of the two-particle state, the two-
body operator is

Gx|e)my = % p 2 (i'k'|g|2'm* )<o|b b, b b Do b blb | o> (22)
i'k' A'm?




The operator commutator relations are

+ = 3
bibk bkbi 0
ot t. t
< =
bl k bkbl 0 > (23)
+ t
-+ =
bibk bkbi 6ik_/
where 6ik is the Kronecker delta. Using these relations and the property,
b.]o> = @bt =0 (24)
i i
enables equation (22) to be written
Gkle]am> = (iklglam) - (ik|g|mR) (25)
If the initial and final states are the same, equation (25) yields
Gklelik) = (ik|glik) - (ik|g|ki) (26)
Thus, the matrix elements of two-particle operators, in second quantization, are
antisymmetric.
For an A-body state, the state vector is
t t t
= ceeb,e.b
|a> = bieeubi.nob |0) (27)
Hence, for a two~body operator, equations (19) and (27) give
alelay = Z 2 (ik|g|am) <albbibob [A (28)
ik fm
which reduces to
A
1 , . . .
alelsy =2 2. Wik|glik) - (ik|g|xi)] (29)
i, k=1



The Optical Potential
In second quantization notation, the state vector for the ground state of the
projectile nucleus is
t t +
= I + I 0
20> = pl-e-pyeeepy |0 (30)
P
where p; are projectile nucleon state creation operators. Similarly, the ground
state of the target nucleus is
I + t
|T0> = g1...ga...gAT|0> (31)

where gE are target nucleon state creation operators. Thus

+
W(x) = <p0T0|vopt|p0T0> = <T0|<Polvopt|po>|'r0> (32)
yields
*
wix) = 25 0 (gl t|aii<T, IKp, lgspkg p. e Dl > (33)
Bk aj
which reduces to
Bp Bp
WE) = 2 > [ajlt]aj) - (ai]t]ia)) (34)
=1 j=1

The matrix elements are

+t > + > > > > >
f fd X, 6,(x) ¢j(xj) taj(xa'xj) g (%X,) ¢j(xj) (35)

(ai|t]ai)

and

Il

+ > > > > >
fd x f ¢ (x o) 05 (%5) taj(xa'xj) b5 (%) ¢a(xj) (36)

In reference 7, the direct term in equation (34) was evaluated as

(aj]tlja)

. oy 3> > 3> > > ~ >
?jz (aj|t]ad) = APATf a F,T pT(F,T)f a’y pp(x+y+gT) t(e,y) » (37)



which is equation (17). To evaluate the exchange term in equation (34), we rewrite
equation (36) as

> >
¢a(xa) ¢j(xj)

. . B 3> 3> + > + > > > > >
(ajlt]je —fd X, fd x, ¢(x(xa) ¢j(xj) taj(xa'xj) ¢j(xa) tba(xj) > 5
¢a(xa) ¢j(xj)

(38)

Rearranging the wave functions in equation (38) gives

> >
bg(x5) 050x,)

. Ly 3> 3>t > > t > > > >
(ajlt]im -—fd X, fa X5 0,(%y) B 0xp) 05(x5) b5(x) £ (x %)) e e
¢a(xa) d>j(xj)

(39)
Combining equations (34), (35), and (39) yields
> 3> 3> + > > + > > > > > >
W(x) = % fd X /d xj ¢a(xa) ¢a(xa) <|>j(xj) ¢j(xj) taj(x(x'xj)“ - chj(xa'xj)]
(40)

with the correlation function given by

> >
¢ (x.) ¢6.(x )

c . =-—23d 31 ¢ (41)
aj > >
¢a(Xa) ¢j(xj)

In termg of nuclear single-particle densities,
> t,> >
= 42
p(xi) ¢i(xi) ¢i(xi) (42)

_>
W(x) becomes

w<§)—2fd3§ (§)fd3§ (%) £ (% ,%.) [1=0C (x_,x.)] (43)
por a Pr'¥q 5 Ppt%y aj a’3 aj Ta’’j
At this point, it is assumed that Ca'(;a’z') depends only upon the relative posi-
tion of the a- and j-constituents. en, tﬂe Fourier transform of equation (43) is
WD =Xt (e,d) 11 -cC ()] E (D) F (D) (44)
q) = < aj €,q aj q T q ) q



where the fact that tas depends only upon the relative position of the - and
j-constituents has been used. The form factors FT(ﬁ) and FP(ﬁ) are the Fourier
transforms of the single-particle densities and caj(a) is the transform of the
correlation function.

Following references 2, 3, and 7, the inverse Fourier transform of a single term
in equation (44) is taken and then summed over all constituents to give

> 3> > 3> > > ~ > - ~ >
W(x) = A A, fd 5,1, pT(ET)f a’y pP(x+y+gT) t(e,y) 01 C(y)] (45)

where an approximation is made by introducing the average correlation function C
given by

[oJN]
|

]
= = Y. c . (46)

PT o X

Equation (45) reduces to the previous result, equation (17), if there are no
correlation effects (i.e., if C = 0).

Correlation Function Approximation

Since Caj in equation (41) depends explicitly on unknown nucleon single-
particle wave functions ¢i(§i), the correlation function in equation (40) or (45)
cannot be determined. Therefore, it must be approximated. One very good approxima-
tion, even for relatively light nuclei, is the infinite nuclear matter approximation
(ref. 13) where the nucleon single-~particle wave functions are assumed to be plane
waves. The corre%gtion function, from reference 13, is then written as

. 2
E ) il i o (47)
y 2 k vy
F
where j4 1is the spherical Bessel function and kp = 1.36 fm~1 is Fermi wave
number. In this paper, for ease of analysis, the expression in equation (47) is
replaced by a Gaussian form
> 1 2
C(y) = 2 exp(-0.18y ) (48)
since
. 2 2 2
3 J,(kpy) ko ¥ 4 4
- = - + k
x_y 1 10 o( FY ) (49)




and

x 2y2
2.2 F L. 44
exp( kF y) =1 0 t© (kF y) (50)

agree for small values of kpy (i.e., when correlations are important).

RESULTS
Harmonic Well Density Distributions

Figures 1 through 6 display results for the charge and matter density distribu-
tions of lighter nuclei (3 € Z < 8) obtained from equations (1) and (14). Values for
the charge distribution parameters a and a, taken from reference 5, are listed in
table I for each of the nuclei. BAnalytic expressions for the nuclear matter density
distributions in figures 1 through 6 can be parameterized as

2 2
pm(r) = AO(B0 + Cor ) exp(—DOr ) (51)
where from equation (14),
3 ~N
P2
AO=
8s
B =1+ 3% _ 302
0 2 852
(52)
aa2
C =
0 1654
N
0 4
S p,

Values for these matter density parameters are listed by nucleus in table II.

Heavy-Ion Total and Absorption Cross Sections
From eikonal scattering theory (ref. 14), the complex phase function is

Leed

> 1 >
x(b) = - EE U(b,z) dz (53)

-0

10



where b is projectile impact parameter, k is wave number, 2z is magnitude of the
projectile position vector in the beam direction. The reduced potential U in terms
of the optical potential W(X) is

1

> - >
U(x) = ZmAPAT(AP + AT) W(x) (54)

Thus, the phase function, including Pauli correlation effects, is

> l N >
x(b) = > APAT ogle) [a(e) + il I(Db) (55)

with

> —3/2f ->f3—> > f3+ > > > > _"'+ -y2
I(b) = [27 B(e)] dz 4 gT pT(gT) d’y pP(b+z+y+£T) [1 C(y)] exp 2 B(e)

(56)

Values for the nucleon-nucleon scattering parameters af(e), o(e), and B(e) in
equations (55) and (56) were taken from the compilations in references 15 and 16 and
averaged over the projectile and target constituent types as in references 2, 3, 7,
and 10. When computing cross sections, the correlation function approximation from
equation (48) was incorporated into equation (56) for C(¥).

>
In terms of the complex phase function y(b), the absorption cross section is

o, = 21rf {1 - exp[-2 Im x(B)1} b ab (57)
0

abs

Table III displays representative absorption cross sections (from egs. (55) to (57))
for carbon projectiles, at several different incident kinetic energies, colliding
with various target nuclei. Also listed, for comparison, are theoretical predictions
from reference 2 and available experimental data (refs. 17 through 20). The improved
agreement between experimental results and the theoretical predictions in this work,
over the predictions of reference 2, is primarily due to the use of the more precise
harmonic well densities rather than the approximate Woods-Saxon distributions for
lighter nuclei. Table IV shows that the effects on the absorption cross sections of
including Pauli correlation were minimal. In general, the percentage reductions in
cross sections were largest for lighter nuclear systems (low mass numbers) at

lower incident kinetic energies. For a given collision pair (Ap, Agq), the percentage
reduction decreases as the incident energy increases. For a given energy, the
percentage reduction also decreases as system mass numbers increase. In all cases,
however, the reductions in predicted absorption cross sections were less than

10 percent.

Table III reveals that the theoretical absorption cross sections from refer-
ence 2 are consistently smaller than those obtained in this work. This is a manifes-
tation of the smaller surface thicknesses of the approximate Woods—-Saxon densities,

11



used in reference 2, over the actual harmonic well surface thicknesses. The approx-
imate Woods~-Saxon densities used in reference 2 were obtained from more exact
harmonic well distributions by artificially flattening the central charge densities
(see ref. 4) at the expense of the longer range tail. The results of this artificial
flattening for 2¢ are displayed in figure 7. Note that the 90% to 10% region is
smaller for the Woods-Saxon distribution than for the harmonic well distribution.

Figure 8 displays predicted absorption cross sections from this work and refer-
ence 2 for 0O projectiles, at 2.1 GeV/nucleon, versus target mass number Bme Also
displayed are experimental results obtained by three experimental groups (refs. 18,
19, and 21). Again, the newer theoretical predictions are in better agreement with
experiment than the predictions given in reference 2. As with the carbon projectile
results of table IITI, the cross sections from reference 2 are smaller because of the
artificial flattening of the oxygen charge density into a Woods-Saxon shape.

Collision total cross sections are obtained from

ot = 41rf {1 - expl~Im x(g)] cos[Re x(g)]} b ab (58)
ot 0

where the phase function, as before, is determined from equations (55) and (56).
Table V gives results from equation (58) for 126120 collisions at two different
laboratory kinetic energies. Also shown are theoretical predictions from reference 2
and experimental results from reference 17. The lack of agreement between the pre-~
dictions of this work and the experimental results of reference 17 may be due to the
large uncertainty in a(e) (around 60 percent at these energies) in Re y(b). This
uncertainty does not affect ogzpg Dbecause oaf(e) does not appear in equation (57).
Varying a(e) between its limits of uncertainty (see ref. 2) varies oior for

2c-12¢ collisions, at 2.1 GeV/nucleon, by 4 percent. Thisg variation is sufficient
to give agreement with the limited results of reference 17. Improvements to this
phase of the theory would require either more accurate knowledge of afe) or more
experimental data for comparison, or both.

Projectile~Ion Abrasion Cross Sections

From reference 10, the cross section for abrading n projectile nucleons is

A
o = (np>2n f{1 - expl-a, ole) I(5)1}" exp[-a_A_ ole) I(B)] b db (59)

where the residual fragment (prefragment) mass number is
A _=A_-n (60)
and I(g) is given by equation (56). Results obtained from equation (59) are

displayed in table VI for Ne projectiles at 2.1 GeV/nucleon colliding with

12



12C targets. Also displayed are abrasion results without Pauli correlations (i.e.,
C =0 in egs. (56) and (59)). For n < 12, correlation effects are insignificant.
This results from the peripheral nature of these collisions where there is little
overlap of the colliding nuclear volumes. As the number of abraded nucleons
increases, greater volume overlap is required which results in larger correlation
effects. The Pauli correlation contribution should be greatest when there is
complete overlap of the colliding nuclear volumes. This situation occurs for
n=~7=ap=20 (i.e., Ap = 0) where, from table VI, the cross section is reduced

by an order of magnitude from the uncorrelated result. Recall that Vgt 1in equa-
tion (16) is written in terms of free nucleon-nucleon transition amplitudes. In
reality, the effective force in nuclear matter is much weaker than the free nucleon-
nucleon force (ref. 22). This is manifested in the reduced cross sections obtained
when exclusion principle correlation effects are included. For the results presented
herein, the carbon target density parameters are those listed in tables I and II.
For the 20Ne projectile, the matter density is extracted, using the procedure in
reference 2, from a Woods~Saxon charge distribution:

p0
1 + exp{(r - R)/c]

pc(r) (61)

with nuclear half-density radius R and nuclear surface thickness t given by
(ref. 23)

o
I

= 2.740 fm

(23
I

2.515 fm

and diffuseness ¢ obtained from

c = t/4.4 (62)

Until recently, no experimental abrasion data were available for comparison with
theory. 1In the past, theoretical abrasion cross sections (which do not include
important ablation effects) could only be compared with experimental fragmentation
results (which do include ablation effects). Hence, experimental verification of a
particular theoretical abrasion model was not possible. Recently, Stevenson et al.
(refs. 24 and 25) have provided experimental abrasion measurements suitable for com~
parison with theory. Figures 2 and 10 display these experimental results for 20ye
projectiles (at incident kinetic energy of 2.1 GeV/nucleon) colliding with a carbon
target.

The experimental results are presented as relative probabilities for forming a
particular projectile fragment residual mass Ap by abrading n nucleons from the
incident projectile nucleus. These displayed results also include only those frag-
ments with nuclear charge 2 1less than 10. This minimizes the likelihood of uninter-
acted beam particles being included in the data. The displayed mass distribution
does not cut off sharply at Ap = 20 because of the finite resolution (=1.5 amu) of
the detector (ref. 25). To compare theory with these experimental results, the theo-

13



retical abrasion cross sections must be converted into relative probabilities. ILet
the relative probability be

R.P. = a (63)

where o, is obtained from equation (59) and

v = - .
Gabs dabs 0.50 1 (64)

In equation (64), Oznhg 1is given by

p

P

C };1 o (65)

o}

and the term, 0.50q, accounts for the 19Ne fragments which are not included in the
experimental data. Additionally, for Ap = 19, the relative probability is given by

0.561
R.P. = (66)

L]
0;albs

since the 19Ne fragments must be excluded.

As displayed in figure 9, the agreement between this theory and experiment is
very good. WNote also that the theory agrees better with the experiment when Pauli
correlation effects are included. This is especially true for the lighter residual
mass fragments. The slight disagreement between the theoretical predictions (with
correlations) and experimental results may be indicative of the approximate nature of
the infinite nuclear matter approximation to the actual correlation function.
Unfortunately, improvements in this area are hindered by the lack of knowledge of the
exact nuclear single-particle wave functions.

Finally, the marked improvement in the abrasion predictions of this work over
those of the original version of this abrasion theory is displayed in figure 10.
Recall that the original theory (ref. 10) used approximate Woods-Saxon densities for

C and did not include correlation effects. Surprisingly, both calculations yield
comparable absorption cross sections (1057 mb for the theory in ref. 10 versus
1076 mb for this work).

CONCLUDING REMARKS

In this work, a previously developed heavy-ion reaction theory, capable of pre-
dicting total, absorption, and abrasion cross sections for heavy-ion collisions, has

14



been significantly improved in two ways. First, the accuracy of theoretical predic-
tions for lighter nuclei (three to eight protons) was improved by developing an exact
analytic expression for the correct harmonic well matter density distributions rather
than approximating these by inexact artificially flattened Woods-Saxon distributions.
Second, the need for Pauli exclusion principle correlation effects to be included

in the theory has been identified and the theoretical framework extended to include
them. Since exact analytical methods for calculating correlation functions require
knowledge of the, as yet, unknown nuclear single-particle wave functions, an infinite
matter approximation was satisfactorily implemented. These Pauli correlation effects
were noted to be especially important for predicting those abrasion cross sections
resulting from collisions involving large spatial overlap of the colliding nuclear
volumes. Further theoretical improvements are presently being developed.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

March 5, 1982
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SYMBOLS

nuclear mass number

defined in equations (52), Fm=3

oscillator parameter, fm

average slope parameter of nucleon-nucleon scattering amplitude, fm?
defined in equations (52)

projectile impact parameter vector, fm

annihilation operator for R2th single-particle state

creation operator for fth single-particle state

correlation function between g~ and j-constituents

average correlation function
defined in equations (52), fm~2
speed of light, m/sec

defined in equations (52), £~ 2

two-nucleon kinetic energy in their center of mass frame, GeV
nuclear form factor

unspecified two~body operator in equation (19)

annihilation and creation operators for target a-constituent state
defined in equation (56)

imaginary part of eikonal phase shift function

number of abraded nucleons

annihilation and creation operators for projectile j-consituent state
momentum transfer vector, fm~ 1

real part of eikonal phase shift function, dimensionless

position vector, fm



aj
opt

W(x)

E07

o(e)

Sabs

exp

Stot

x(B)

proton root-mean-square charge radius, fm

defined in equation (12)

average two-nucleon transition amplitude, MeV

two-nucleon transition operator for nucleons « and j, MeV
optical potential operator, Mev

optical potential (defined in egs. (17) and (45)), Mev
relative position vector of projectile (¥ = B + 2), fm
two-nucleon relative position vector, fm

total number of nuclear protons

position vector of projectile in beam direction, fm
binomial coefficient

harmonic well distribution parameter (see eq. (2))

average ratio of real part to imaginary part of nucleon-nucleon scattering
amplitude

collection of constituent relative coordinates for target, fm
nuclear density, fm™3

normalization constant in equation (1), fm™ 3

average nucleon-nucleon total cross section, fm?2 or mb
heavy-ion absorption cross section, fm? or mb

experimental heavy-ion cross section, fm? or mb

cross section for abrading n nucleons, fm2 or mb

heavy-ion total cross section, fm? or mb

nuclear single-particle wave function (fm)'3/2

eikonal phase shift function

nuclear two-body wave function (fm)-3

19



Subscripts:

c charge

F prefragment
m matter

P projectile
p proton

T target

Arrows over symbols indicate vectors.

20



TABLE I.- NUCLEAR CHARGE DISTRIBUTION PARAMETERS
FROM ELECTRON SCATTERING DATA

[From ref. 5]

Nucleus o a, fm

i 0.327 1.77
%Be 611 1.791
11y .81 1.69
12¢ 1.247 1.649
14y 1.291 1.729
164 1.544 1.833

TABLE ITY.— HARMONIC WELL MATTER DENSITY DISTRIBUTION PARAMETERS

&ucleus Ay, fm ™3 B, éOIme—2 Dy« £m~ 2

74 0.0282 0.906 0.148 0.380
9Be L0211 .829 .268 .370
11y .0225 .739 .419 .425
12¢ .0190 .571 .691 .452
14y .0156 .607 625 .402
160 0112 591 636 .350
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TABLE III.~ ABSORPTION CROSS SECTIONS FOR 120 PROJECTILES

COLLIDING WITH VARIOUS TARGET NUCLEI

Oabs: b
AT R R Oéxpl mb
This work Ref. 2
0.87 GeV/nucleon
12 819 763 2339 1 49
2.1 GeV/nucleon
1 237 246 269 + 14
bysg 1+ 21
12 839 781 2ggg ¢ 50
bgre & 23
16 990 820 bio22 & 25
64 1727 1656 by730 = 36
138 2519 2447 €2600 + 100
184 2924 ©3000 + 100
208 3047 2969 by960 + 65
3.6 GeV/nucleon
12 836 779 d7g0 & 30
20 1059 902 41040 + 60
64 1723 1653 41700 + 90

8Reference 17.
Reference 18.
CReference 19.

dReference 20.

TABLE IV.- PAULI CORRELATION EFFECTS ON ABSORPTION CROSS

SECTIONS FOR SELECTED COLLISION PAIRS

Incident Oabgs Wb

Collision kinetic g -

pair energy, Without wWith
GeV/nucleon correlation correlation

Ne + C 3.6 1144 1059
O + Cu .1 2059 1951
2.1 2055 1952
22.5 2039 1940
O + Pb .1 3416 3341
2.1 3418 3346
22.5 3403 3333

Reduction
in Oabss

percent

7.4

= o,
.
wonNn

NON
.
O - N




TABLE V.- TOTAL CROSS SECTIONS FOR '2c-12C SCATTERING

Incident kinetic Opots MD Cexps M
energy, . (ref. 17)
GeV/nucleon This work Ref. 2
0.87 1348 1293 1256 + 54
2.1 1413 1348 1347 £ 53

TABLE VI.- OPTICAL MODEL ABRASION CROSS SECTIONS

FOR THE REACTION

20ye + 12¢ » n + X

[Incident kinetic energy is 2.1 GeV/nucleon]

Number
of Abrasion cross sections, mb
abraded
nucleons, With Pauli Without Pauli
n correlation correlation
1 248 248
2 134 134
3 95 95
4 76 75
5 64 64
6 57 56
7 52 51
8 48 48
9 45 45
10 43 43
11 42 42
12 40 42
13 38 42
14 33 41
15 27 39
16 18 33
17 10 25
18 4 14
19 1 6
20 0.1 1
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1.~ Harmonic well charge and matter density
distributions for 'Li.

2.~ Harmonic well charge and matter density
distributions for “Be.
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Figure 5.~ Harmonic well charge and matter density
distributions for N.
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Figure 6.- Harmonic well charge and matter density
distributions for 0.
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Figure 8.- Absorption cross sectiong for 164 projectiles.
Incident kinetic energy is 2.1 GeV/nucleon.
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Figure 9.- Theoretical abrasion results (with and
without the Pauli correlation correction) com-
pared with experiment for 20Ne projectiles
colliding with C targets. Incident kinetic
energy is 2.1 GeV/nucleon.
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Figure 10.~ Abrasion results for 20ye projectiles
colliding with 2¢ targets predicted in this
work compared with a previous theoretical model
(ref. 10) and with experiment. Incident kinetic
energy is 2.1 GeV/nucleon.
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